An IMT-type double exponential formula for numerical integration

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Developments in the Double Exponential Formulas for Numerical Integration

The double exponential formula, abbreviated as the DE-formula, was first presented by Takahasi and Mori [18] in 1974 as an efficient and robust quadrature formula to compute integrals with end point singularity, e.g. 1 = L (X-2)(1-X)V4(1+J03/4 > C 1) or over the half infinite interval, e.g.-/ Jo OO e~*logxsinxdx. (2) The DE-formula is based on the optimality of the trapezoidal rule over (—oo, o...

متن کامل

Numerical indefinite integration by double exponential sinc method

We present a numerical method for approximating an indefinite integral by the double exponential sinc method. The approximation error of the proposed method with N integrand function evaluations is O(exp(−c1N/ log(c2N))) for a reasonably wide class of integrands, including those with endpoint singularities. The proposed method compares favorably with the existing formulas based on the ordinary ...

متن کامل

A Double Exponential Formula for the Fourier Transforms

In this paper, we propose a new and efficient method that is applicable for the computation of the Fourier transform of a function which may possess a singular point or slowly converge at infinity. The proposed method is based on a generalization of the method of the double exponential (DE) formula; the DE formula is a powerful numerical quadrature proposed by H. Takahasi and M. Mori in 1974 [1...

متن کامل

An Extended Matrix Exponential Formula

In this paper we present matrix exponential formulae for the geometric and spectral geometric means of positive definite matrices using a conjectured exponential formula that solved by Wasin So [Linear Algebra Appl. 379 (2004)]. Mathematics subject classification (2000): 15A24, 15A29, 15A48.

متن کامل

On Approximating Hard Integrals with the Double-Exponential Formula

Approximating I#PART = ́ 1 0 ∏ n k=1 cos (xkπt) dt to within an accuracy of 2 −n where the input integers {xk} n k=1 are given in binary radix, is equivalent to counting the number of equal-sum partitions of the integers {xk} and is thus a #P problem. Similarly, integrating this function from zero to infinity and deciding whether the result is either zero or infinity is an NP-Complete problem. E...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Publications of the Research Institute for Mathematical Sciences

سال: 1978

ISSN: 0034-5318

DOI: 10.2977/prims/1195188835